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The first experimental results on highly separated transonic
flow is reported, using as a model a rectangular tube placed
at strong incidence (up to 40 °) in a transonic jet. Attention
is given to the wind tunnel, to photographic visualization of
the flow, and to measurements by pressure probes, hot-wire ane
mometry and laser anemometry. The simultaneous use of differ-
ent means of measurement has provided a good description of th,
phenomenon, and has indicated the existence of shocks and theil
stability, as well as the existence of the bubble, its dimen-
sions, and in particular, the reattachment of its front. The
results show that the bursting (or transition) of the bubble
front is produced at an unstable position and creates a point
of turbulent intensity which diffuses over the entire height
of the flow.
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HIGHLY SEPARATED TRANSONIC FLOWS*

***/i

A. Farcy, V. Mercier, R. LeBlanc, R. Goethals**

I. INTRODUCTION

This report describes the first experimental results ob-

tained for highly separated transonic flow. The model is a

nozzle having a cross-section placed at a high incidence angle

(up to 40a) in a transonic Jet. A separation Subble appears

along the lower leading edge (Figure i). The resulting flow is

very perturbed and difficult to predict theoretically. If the

model represents an aircraft motor air inlet, one can then

appreciate operational difficulties for the motor under such

conditions. The purpose of this work is to test experimental

methods which are capable of providing reliable results.

The definition of the most interesting configuration, which

was the object of a preliminary study [I] is briefly described

in Chapter 2. The investigation procedures of the flow are des-

cribed and discussed in the following chapters. We are dealing

with visualization and measurements with laser and hot wire

anemometers. We will see that the combination of these means

in the future will lead to a detailed knowledge of this type of

flow.

2. WIND TUNNEL AND MODEL--SELECTION OF THE CONFIGURATION

2.1. Wind tunnel and model

*Research carried out with the contribution of the DRET
Contract no. 79/069. November, 1979.

**CEAT-ENSMA - Poitier.

***Numbers in margin indicate pagination of foreign text.
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The transonic jet, the model and its support are shown in

Figure 2. The air is supplied by a HP (high pressure) network

(200 bars) from CEAT, expanded to 4 bars maximum in a 4m 3 con-

tainer which contains a heat exchanger. The settling chamber

is a 0.125 m 3 caisson attached to the chamber. The transonic

nozzle with a cylindrical wall with dimensions of 100x 40 mm 2

cross-section is attached to the caisson. The high contraction

ratio (34) assures a uniform jet and fine frontal layers which,

together with filter screens mounted between the chamber and the

caisson, will only bring about a small degree of turbulence in

the free jet on the order of 1%. The measurement of the stag-

nation conditions Pt and Tt is performed in the chamber as well _

as the sensing of the flow using the laser and anemometer. For

the tests described here the inclination of the jet with respect

to the horizontal is 40 ° .

The model has a high H equal to 40mm and has a chord of 80mm.

It is made up of two plates 250mm long, with sharp leading edges.

The lateral walls go beyond the plates by 20mm and its edges are

sharp in order to form guard plates. The windows have an opti-

cal quality and allow flow visualizations and laser anemometry.

They are recessed into the lateral walls. They are installed on

hinges and can be easily opened in order to allow easy cleaning

of the windows, required for laser anemomet_y.

A diffuser with a total angle of 7° is installed at the

outlet of the model. It is followed by a deformative throat,

consisting of a spring loaded steel sheet, which allows adjust-

ment of the flow rate.

The entire complex is installed on a support which can be

varied in incidence angle (from 0 to440°), which allows one to

carry out the tests described below.

2.2. Selection of the confisuration
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The preliminary tests on the functioning of a model of an /2

air inlet have shown that a large separation bubble exists for

an incidence angle equal to 40 ° , but it is very mucbreduced

for _ = 20 ° (Figure 4). The variation of the flow rate coeffi-

cient _ seems to have a small effect on the geometry of the

bubble. On the other hand, we have shown that the average Mach

number measured in a section x = 4H, for example, can vary great-

ly with _. We have concluded that the interesting configuration

for systematic measurements of velocity and turbulence intensity

using laser anemometry which is the main objective of Reference

I, was obtained at 40 ° with a throat opening equal to 14mm.

A map _(M) was drawn for the section x = 8H of the model in

the present study. _ and M are derived from measurements of two

stagnation pressures at z = 5 and 15mm and the wall pressure ,

where the flow in this section was sufficiently homogeneous. The

Mach number of the free jet is 0.7. The results are shown in

Figure 3. The flow rate coefficient _ increases when the height

of the throat h increases and the incidence angle a decreases.

The average Mach number in the section follows the same trend

for h = 16 and 20, but there is an inversion which occurs for

h = 12 and 8 when _ = 30 ° . Since we do not have a rigorous

explanation, we will make two remarks: (I) For these two values

of opening, the throat is very close to sonic conditions

(M* = i) if we consider the value of the average Mach number at

x = 8H (Figure 3). (2) The substantial development of the

bubble at 40 ° results in a homogeneity at 8H which is less good

than for a = 20 ° and three pressure measurements are not suffi-

cient for obtaining a good accuracy.

The configuration retained for the comparative study of the

test means was _ = 40 ° , h = 14mm, which is an operating point

estimated so that _ _ 0.57 and M = 0.39. These characteristics

are close to those imposed under contract. They result in a

highly separated flow with a transonic region and shock waves,

3



as the flow visualizations described in the following chapter

will show.

3. VISUALIZATIONS OF THE FLOW*

3.1. Testequipment

The installation is equipped with a strio-ombroscopy table

produced at CEAT and which has two mirrors with a diameter of

300, F = 3m. The image is formed on the sensitive plate of a

photographic chamber or on the film of a rapid camera.

The photographs on 9x12 plates with a sensitivity equal to

400 ASA are made using two types of luminous sources: Either

a continuous mercury vapor lamp, and the exposure time has been

1/500 or 1/250 seconds, or a spark, with a duration close to

i _s. /3

The films of the 25 images with the format 15x24 were made

with a camera of the LCA of type C14 at frequencies between

8x104 to 106 frames per second. The image from the optical

system is passed to a rotating mirror and then to an objective

battery which then forms the definite images on the film. The

useful sweep angle is 72°; the velocity of the turbine provides

the rotation of the mirror which is controlled electronically.

The beginning of the illumination must be synchronized with the

position of the mirror so that the 25 images are formed once

only. The automatic triggering of the aluminum source and mea-

surement of the velocity of the mirror are accurate to I/I000.

The quality factor, that is, the ratio of the time interval

between two images and the exposure time,is 3.1. At 106 images

per second, the turbine rotates at 4000 rps and the exposure

time of one image is 314 ns. We use 35 millimeter film with a

*With the participation of Mr. Antigny, photographer.



sensitivity of 400 ASA, sometimes pushed to 3000 ASA during

development. The luminous sources are of two types, depending

on the frequencies at which the frames are made: Either a

flash generator for I00 _s (106 images per second) or a burst-

ing tube whose flash time is adjustable.

Let us mention the recording on a magnetoscope of the

strio-ombroscopic image, when a parametric study is made for

example, in order to avoid an observation test repetition. One

interesting application is to find the unsteady regime such as

the pulsation of the bubble. The mediocre quality of the

reconstituted image does not allow a quantitative evaluation.

Let us also mention that the wall visualizations, realized

afterwards on an oil film and black smoke, did not produce any

significant three-dimensional effects.

3.2. Photographs on plates

Examples of photographs on plates of ombro and strioscopy

using flashes are shown in Figure 4a. They were taken during

systematic flow visualization tests with an open throat, open

to a maximum (h = 20mm). The strio and ombroscopic techniques

respectively show the gradients and the variations of the density

gradients of the flow and are, therefore, complementary.

The main interest in the plate photographs is the good

quality of the image which results from the dimensions and the

sensitivity of the support. The impressions of a richness of

information given by this technique must be materialized by the

analysis and the exact description of the events. Below we will

attempt to discuss the results and will not attempt to give defin-

ite information about the aerodynamic phenomena.

The separation bubble e = 40 ° is characterized by two

methods in the forward part. Its boundary, which is a highly

sheared layer, is characterized by a change in color (gray/black)
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in strioscopy, a_d by a dark/white line in ombroscopy.

The gradients are practically constant in the highly accelera-

ted region above the bulb, and this brings about a uniform dark

zone in strioscopy, just like the "wake" of the bubble. This

wake is caused by the bursting of the shear layer, the bound-

ary of the bubble. This transition is very rapid as the two

ombroscopies clearly show. It is produced at the average posi-

tion x _ H/2. The wake diffuses in the upper direction and down-

wards. These boundaries are very highly shredded, and show large /4

structures which extend over the entire height after x _ 3H.

After mentioning the "large structures" emitted by the bubble,

it is appropriate to speak of "small structures" which make them

up and which are visible on the ombroscopies. Therefore, we

can see the net requirement for having quantitative information

using sensors.

Therefore, we can draw practical information by analyzing

several samples of the same flow, and during its evolution over

time (statistical aspect). The normal shocks which delimit

the supersonic region in the upper forward part of the model vary

in position. The transition of the upper boundary varies also

as well as the boundary structures of the bubble and its wake.

It is difficult to go further in the interpretation and we,

therefore, again see the requirement for continuous recording of

the phenomena.

3.3. Hi@h speed films for viewin@

Several rapid films were made, strio and ombroscopic, at

75,000, i00,000, 250,000 and 1,000,000 images per second. Fig-

ure 4b shows i0 successive years of a strioscopy filmed at 250,000

images per second. The enlargement of the zone of interest is

important and the quality is poorer than with plates. One can,

nevertheless, observe certain characteristic evolutions. For

example, in photograph I, above the hot wire probe, we see an
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egglike structure with a central core. This appears clearly

in photograph 4 and disappears in photograph 8. Therefore, it

exists for around 20 _s. This evolution is relatively slow as

well as the evolution of the normal shocks which remain practi -

cally stable for the entire series. From this we can conclude

that the fluctuation frequency of an average boundary over which

there are shocks is less than 20 kHz. Also, we should note that

the inclination of the structure is also visible on the ola_e

photographs which shows their coherence and their deformation

due to the high veolocities of the upper layers. Photographs at

smaller speeds and quantitative measurements are necessary here.

During preliminary tests, we also filmed a strioscopy at

8000 images per second with a HICAM camera having a rotating

prism. The Mach number at the inlet was higher: 0.85 to 0.71

for the configuration adapted after that. The flow remains sup-

ersonic over a larger distance, which is not important for our

work, which has to do with the investigation of a technique.

This film essentially shows that the average bubble boundary is

stable up to 4 kHz*,that the transition point (also so that

x (H/2) is displaced by a few millimeters along the average

stable line, that the normal shocks are unstable and that their

fluctuations seem to be tied to those of the transition point.

Finally, we should remark that if the existence of the bubble

raises no doubt about the photographs, the reattached position

cannot be estimated with accuracy. /5

3.4. Exploitation of the phgtosraphs usin_ equidensity

techniques

The photographs presented in the previous paragraphs were

analyzed using the equidensity technique. An example of this

*That is, within the limits of the utilization of the camera.
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is given in Figure 5. This is a sequence of a few successive

images of a rapids filmed at i00,000 images per second. The

exposure time is 3.14 Us. The technique used consists of

translating the various densities of a black and white origin-

al by various colors. For this we make several copies of the

original on a special film (Agfacontour) which behaves both as

a positive and a negative at the same time, and which gives an

image of a single density level to the original. The width of

the region depends on the color temperature of the light utilized

for exposure; its position in the gray levels is determined by

the exposure time. It is then sufficient to take equidensity

prints obtained on a colored film with a different filtering in

order to obtain the final results._

This procedure makes the strioscopic plates more readable

by giving a fine description of the details in the zones with a

high gradient (boundary of the bubble). We are, therefore, free

from chromatic abberations and problems of luminous sources

which are related to color strioscopy with a dispersion prism.

The I0 images of Figure 5 cover a time interval of i00 _s.

As in Figure 4b, the large convection structures in the flow

appear clearly as well as their inclinations and their rapid

deformation. Examination of the bubble boundary of separation

shows that it has oscillations after x = H/2, particularly

visible on images 5 and the following. These oscillations are

amplified and are accompanied by phenomena of particle entrain-

ment of the fluid by the accelerated layers. A complete cycle

seems to be produced at 7 to I0 images which corresponds to fre-

quencies of i0 and 15 kHz, the order of magnitude found using

spectral analysis (see Chapte_ 5).

For the sections x > 4H, the gradients become smaller, the

strioscopic plates do not give much information.



4. MEASUREMENTS USING LASER ANEMOMETRY [I]

4.1. Apparatus

The laser anemometry chain developed by the CEAT by

ARDONCEAU for supersonic flow applications [2] allowed us to

obtained particularly interesting results on the shock-bound-

ary layer interaction [3] and for the air inlets which we are

discussing here [1,4].

Figure 6a gives a view of the laser anemometer on a /6

carriage in front of the installation. A 5 W coherent radia-

tion laser provides a 2 W bundle at the light 5145 A. The

laser unit-optical head (bundle divider and Bragg cell) is dis-

placed along a carriage commanded by the IBM 1800 computer.

The Bragg (TSI) cell excited at 40 MHz gives fringes and the

velocity direction is derived from the frequency of the result-

ing signal:

fD _ 40 _Hz velocity opposite to the direction of th@

fringes,

fD < 40 _mz velocity in the direction of the fringes

The interfringe utilized here is between i0 and 15 _ and

the diameter of the section of the test volume varies between

0.3 and 0.6 mm depending on the focal length of the condensor

placed after the bundle divider. The light diffused by the

particles (seeding with dioctylphthalate with diameters of 0.7

to 1.3 _) is captured with direct diffusion by a lens having a

very wide opening (diameter 60mm, F = 90mm) and is focused on

the diaphragm of a photomultiplier (RTC, XP lll0).

The signals coming from the photomultiplier are treated

by counting using a digital counter studied at the CEAT and

developed together with DELTALAB (DELTALAB - CEAT ANL 200).

The frequency range which can be measured extends from I0 kHz



to 50 MHz, which allows measurement of velocities of a few

cm/sec to more than 500 m/sec, depending on the characteris-

tics of the optical equipment. The resolution is 5 ns. The

high amplitude signals are eliminated and the numerical valid-

ation (which only records particles which pass in the plane of

the fringes and perpendicular to it) is done with double count-

ing with 5 and 8 alternations. The outputs are numerical _

(2'16 bits for nonvalidated measurements and 12 bits for valid-

ated measurements) as well as analog (rapid 12 bit converter).

A timing allows a rapid rate (800,000 points per second at 50

MHz) or a slow rate (800 pts/sec) for the acquisition with

telephone cable on a IBM 1800 computer. Since the measurement

rate does not affect the arrival of particles, it was not nec-

essary to carry out a correction due to a possible bias due to

sampling (over estimatidn of high velocities).

The averages and standard deviations of the frequency are

calculated a first time for several erroneous values, which

could exist at frequencies which are very far away from the

maximum of the histogram, and this is eliminated with the test

4.2. Measurement of lon_itudinal velocities and their

fluctuations

The average longitudinal velocities _ and the_ean

quadratic value of their fluctuations u' are shown in Figure 7a.

The position of 5 planes of measurement is indicated on the dia-

gram. The soundings were made every 2 mm and sometimes every

I mm (bubble) at the height H. Below we will summarize what

can presently be derived from applied, laser anemometry_ applied

to a transonic flow which is highly separated and violently

perturbed.

The bubble is obviously present. It consists of a region

of small velocity, 0 velocity, and a return velocity region with

I0



8 mm for H, limited by a thin layer of 4 mm which is very

highly accelerated. The return velocities are maximum at 2 H

where they exceed 50 m/s. The reattachment is produced between

3 and 4 H. The measurements were repeated in the bubble (x

H/2) successfully.

We measured maximum velocities of 280 m/s (at H/4 and H).

Considering the sizeable fluctuations (up to 40 m/s at H for

z _ 12 mm) we can explain the existence o_ the transonic region

and the shocks observed in the photographs. The instability of

of the shocks will be the result of this fluctuating combina-

tion, probably also related to that of the transition point.

Substantial fluctuations observed in the center of the pro-

files u' for x _ H/4, H/2, H and which then diffuse over the

entire height, could come from the strong shear demonstrated

before, but also it could be caused by the possible instability

of the boundary. In the following paragraph, we will show how

this hypothesis has to be rejected. Outside of this maximum,

the turbulence is practically constant and its value is two to

three times greater in the bubble than in the upper part, and

this is true up to x _ 2H. The diffusion in the entire field

is broken up for x _ 4H and is complete at x _ 8H, where the

average speed _ is practically homogeneous.

Without entering into a detailed analysis of the flow, we

can see that the turbulence referred to an average speed of i00

m/s goes from I0 to 40% from the inlet to the outlet. This is a

substantial increase.

4.3. Measurements of transverse velocities and of their

fluctuations

The transverse velocities for x _ 0, H/4 and H/2 are large

and confirm the existence of the bubble. The inclination of the

II



streamlines downwards which leads to reattachment is substantial

at 2 H and almost disappears at 3 H. Reattachment between 3

and 4 H is, therefore, mostly indicated by the disappearance of

the longitudinal return speeds than by the inclination of the

streamlines. The high turbulence, that is, u' as well as v',

explains this behavior.

The large vertical velocity gradient at x = H/4, y = 6,8,

results in a rather weak increase in v' at H/2 which disappears

rapidly. There is no substantial increase in the vertical fluc-

tuations at the bubble boundary, which would not be the case if

it were oscillating. This important remark confirms, therefore,

the hypothesis made in the preceding paragraph, that only the

shear of the viscous boundary layer which must explode between

0 and H/4 (Figure 7a) is responsible for this turbulence in-

crease.

The intensity of the vertical fluctuation at the output

related to I00 m/s is less than 20% It is one-half of the long-

itudinal value, but v' (average) is very close to u' at
moy moy

the inlet.

5. MEASUREMENTS USING HOT WIRE ANEMOMETRY /8

5.1. Problems related to compressibility

The voltage fluctuations at the terminals of a hot wire

maintained at a constant temperature and subjected to a compress-

ible flow depend on velocity fluctuations, the specific mass and

the total temperature of the gas. Generally, it is assumed that

the sensitivity coefficients at the speeds and specific masses

are equal for a Mach number of M _1,2 [5]. It is then possi-

ble for supersonic flow, to reduce the number of parameters

contributing to the wire response to two (mass flow rate pu

and total temperature Tt) and to use various separation procedures

12 H



The spectrum analyser used is the SAICOR 51A type which

produces spectra on 200 points transferred numerically to a

data acquisition center IBM 1800.

In order to proceed with the statistical analysis of the

hot wire signals, the recorded signals are reread at a tape

rate of 7.5 inches per second (19 cm/se_ and then sampled by

the IBM 1800 at a frequency of 8.4 kHz. This procedure allows

the simulation of a rapid acquistion at 135 kHz.

5.3. Spectral analysis

Figures 8a and 8b show the examples of spectra (spectral

energy density) at two sections x = H and x = 4H of the air

inlet. The hot wire is oriented perpendicular to the flow

plane. For the section x = H we avoided the zone where there

is a strong recirculation (z < 5 mm) and the zone where the Mach

number is greater than 0.8 (z > 14 mm)°

If we take into account the fact that we do not have access

to the global level of energy and that we cannot position the

spectra with respect to one another, we can recognize that the

exploitation of the spectra in this form is difficult. We would

remark that the spectra of Figure 8b for z _ 12 mm have a char-

acteristic peak at 38.5 kHz, probably due to a vibration of the

wire due to a stress effect. In order to avoid this draw-

back, we are considering using modified probes with shorter

posts.

Figure 8c shows the variation of the region of frequency

which contains the maximum energy in the sections x = H and

x = 4H. The hatched area corresponds to an estimation of the

narrowest frequency band which contains 50% of the total energy.

The examination of this figure leads to the following remarks:

II 13



for example, the method of fluctuation diagrams.

In general, the transonic case does not allow this simpli-

fication and is complicated due to the existence of shocks which

are often unstable at the level of the probes. This then

directed our work towards hot wire measurements. We concen-

trated on two points which were more qualitative than quanti-

tative. The purpose was to obtain additional information on

the global behavior of the flow instead of precisely describing the

kinematic field (see Chapter 4).

The tests were performed by making the following precau-

tions:

~ limitation of the total temperature fluctuations by

controlling the temperature gradients. The generating

temperature is maintained by reheating (see Chapter i)

at the level of ambient temperaturej

- functioning of the wire with strong overheating (6.8),

- if possible, measurements in zones where the Mach number

is too close to i are avoided.

5.2. Apparatus

The hot wire probes are DISA 55 A 53 subminiature probes

with long posts (3mm) mounted in a cross-configuration within

a folded monel tube with an external diameter 2mm. The anemo-

meters used are the DISA 55 M type, having the standard CTA

55 M i0 ridges. The passband of the complex is substantially

above I00 kHz.

The opposite signals of the anemometers are centered and

then recorded on an FM Bell & Howell RD-378/U magnetic recorder.

The tape speed rate is I00 inches per second (3.04 m/s) for

recording which assures a passband of 500 kHz for a signal to

noise ratio of nominally 32 dB.

14



a/ the average width of the most energetic band varies

from 1/2 decades for x = H to 2/3 decades for x = 4H

which indicates an energy transfer towards the smaller

turbulent scale.

b/ in the zone of the section x = H where the fluctua-

tions are more intense (z _ i0 mm), the energy maximum

is centered at the frequency f* _ 15 kHz, which corr-

esponds to large structures of high energy having the

size:

u 155 m/see
A : ---.;-_-:-- - -- I0 mm H/2f 15 10_/_;<,,c .or

c/ in the section x = 4H we see a substantial reduction

in the highest energy frequencies in the zone of the
border wake of the separation bubble (z -_ 8 to 16 mm).

The characteristic scale estimated previously varies

from:

A "u 70 ,,: o p, m,,i or H/8
-I-"< 25. I()-' .......

in the lower quarter of the section to:

1'. = ......i30.._ ._-16 mm or 3H/4
B..__-"

in this wake zone whose thickness is on the order of H/ft.

Therefore, we can assume that these large convection /i0

structures, transported by the flow, are deformed and inclined

by the vertical velocity gradient, which appears clearly on the

various flow realizations (Figures 4 and 5).

6. DISCUSSION OF RESULTS-FUTURE DEVELOPMENTS

The combination of the techniques of qualitative measure-

ments and quantitative measurements is necessary for the anal-

ysis of complex flows such as occur in a transonic air inlet

15



with a large incidence angle. A single method used within its

limits could not give the information obtained from several

additional methods, even though they were only partially

exploited. Here we present a synthesis of the results Which

show how measurements made in highly separated transonic flows

using flow visualization (V), filmed visualization (VF) measure-

ments with pressure probes (P), laser anemometry (AL) and hot

wire (FC)_are all complementary.

The simultaneous use of V, VL, P and AL gives a good gen-

eral description of the phenomena and its evolution as a func-

tion of the various parameters. By a general description, we

mean the following: (i) the existence of shocks and their

stability (V, VF); (2) existence of the bubble (V), its dimen-

sions (V, AL) and in particular, the reattachment (AL) and the

oscillation of the boundary (VF, AL); (3) the flow rate coeffi-

cient by an approximate but sufficient evaluation of the press-

ures (P).

The description of the turbulent nature of the flow is a

tributary of the combination V, VL, AL and FC. The first

results presented here show that the flow (or transition) of the

bubble boundary occurs at an unstable position (V and VF) and

creates a turbulence intensity point which diffuses over the

entire height of the flow (AL, FC). We found large structures

(V, FC) which rapidly evolve (VF, FC) and are inclined due to

the effect of a velocity gradient (V, FC). The intensity of

the fluctuations is uniform in the bubble, outside of it(out-

side of the shear layer) and far downstream (AL).

Finally, we estimate the evolution of scales of turbulent

phenomena, especially large convective structures_(VF, FC) and

we propose an experimental series in order to characterize the

distortions which they will produce in the flow (FC).
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a) Model wind tunnel and laser anemometry

b) Processing electronic

FIGURE 6. INSTALLATION AND LASER ANEMOMETRY

22



20
Zmm

16

12

8

4

o
_100 0 ,.100 200 0

8H ..

100 200 D Im/~1

U'
Iml~J

o 20 40

.- x
I \ '\ ......... • x
x x . ~ •

~
\

I \ \ '"
f x '" \

I " " "• \" ...... I, x" ',,- ~
Ox 0<

I I
x----.

. . . Ox

'- \ \< I '".--' ./
. ~ o • 0I

) .' 0/. >0 . .;

~
I I .( . I.0 . /I I

ac

• . ... .'• I
j

~ >\ I
~ ) .,,/ .-/0 '"

I /

[) 20 40

20
IZmrn x

16 I

j.
12 x

I,
8 \x

x

4 \

l.>0

a) ~.longitudinal

)(

)(

8H1)'00 ~ H/2 H 2H 3H 4H

Ztm[f,l I' r f"" ,,~ t-- t1
('1 )( x )()()(

o ~ \ '. I.
\ '. 'Ii I I i'

1') , \. \ \ J r l ~ r
lu )( x ' )( IX x )(I x r8l '\ I '\ k// iii fl Jr. t:, r~ - I' il \ ' ,I
4 \ V

X tf ~I' 'I i L
\ i' ~ tj 1r 1 " ~

o _.r~;-_-;...d..L__,"_--...--,__L_~"""~'--_.l-_.J...r---l
o Iud £:00 0 100 0 50 0 - 25 0 "·25 0 0 0_

v(1lIlS)

- 20r'-- r. I-r;:c:-zunrr
1
';6 ~).'. 1\ i '( \ x, x, 1

~
)( )( x )( >: )It \

~ l\ I \ I \ 'i

l
\ , \ i x x )/ X

1,", 'i x "" ~ ~ ~ ~~ I" \ ., \ ,
lu I \ I "" '\ r x x " ,

8 . r l 1 [ /x ~ '\" \ \ r I J,
~ ~ k r / I" 'j" l II 'i fl i4 ~ I I I 1 X" x

\ I J I i r I r f l" i t· 1o L.:-_. --I..t..~ ._JL_.J/~__L~::_l.,_:J~"_ .."_.~.le.:...J
o 20. 0 20 0 2Ll G20 0 Lf) 0 20 0 20 0 20

V'lmlsl
b) _ transverse

. ;-.

FIGURE 7. MEASUREMENT OF AVERAGE SPEEDS AND
FLUCTUATIONS USING LASER ANEMOMETRY I

23



' S×x(dbl Z=16tmmll
0 "

• Sxx[dbl Z:12(mml

0

0

°I%,

-20
-20 10 fikHzl 100

"tO f [k_zl 100
Figure 8b. SPECTP,,AL ANALYSIS

Figure 8a. sPECTRAL ANALYSIS (hot wire)
(hot wire)

Z Imml

Z (mini 20 X: AH

2o X:H _6

16 12

t2 6

..

! _._------_
4, 0 I _kHZ) 100....j _0

L-

0 10 ftk_z) 100
r

Figure 8c. DISTRIBUTION OF THE MAXIMUM
OF sPECTRAL ENERGY

\

r 24


